Monday, September 9, 2013

Surface Area: Pyramids

Now that we've looked at prisms and cylinders, we need to consider the formula for pyramids.

1. What shape is it?

There are no rectangular faces, so this is a triangular pyramid.

2. Write the formulas

As you can see on the formula chart, this formula is rather different compared to prisms and cylinders.  One of the differences is the requirement of lateral height (l).  This is the height from the base to the top of the pyramid measured along a face instead of through the middle of the shape.  Since the sides are all triangles, they would add up into one big triangle, but would still follow the area formula, so that's where the 1/2 comes from.  Also there is only one base.

General                                       S. A. = (1/2) * P * l + B
Specific                                       S. A. = (1/2) * (s+s+s) * l + ((1/2) * b * h)

3. Plug in the numbers

                                                  S. A. = (1/2) * (5 + 5 + 5) * 7.1 + ((1/2) * 5 * 4.3)

4. Solve

That looks like alot, so let's break it down by using order of operations.  The perimeter is easy with 15, and half that is 7.5.
                                                  S. A. = 7.5 * 7.1 + ((1/2) * 5 * 4.3)

Next, half of 5 is 2.5.                  S. A. = 7.5 * 7.1 + (5 * 4.3)
                                                  S. A. =  53.25 + 21.5
                                                  S. A. = 74.75  square feet

Let's try another.

1. What shape is it?

This is a rectangular or square pyramid.

2. Write the formulas

General                                     S. A. = (1/2) * P * l + B
Specific                                     S. A. = (1/2) * (2b + 2h) * l + (b * h)

3. Plug in the numbers

                                                S. A. = (1/2) * (2 * 9 + 2 * 9) * 9.2 + (9 * 9)

4. Solve
                                                 S. A. = (18) * 9.2 + (81)
                                                 S. A. = 165.6 + 81
                                                 S. A. = 246.6 square centimeters

No comments:

Post a Comment